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An Efficient Algorithm for Obtaining the Volume 
of a Special Kind of Pyramid and 
Application to Convex Polyhedra 

By Ted Speevak 

Abstract. An efficient method is given for obtaining the volume of a pyramid of species n - 2 
whose base is a convex polygon. The pyramid is " transformed" into a simplex whose volume 
is computed directly. A refinement is provided to the Cohen-Hickey method for determining 
volumes of convex polyhedra. 

1. Introduction. Recently, some papers have appeared which give analytically exact 

algorithms for obtaining the volume of convex polyhedra in Rln [1], [3], [4]. These 

papers were motivated by practical applications: [1] arose from work on mechaniz- 
ing programme analysis and the desire to determine the probability of taking a given 
path through a sequence of conditionals (where the Boolean expression in a 
conditional consists of a linear inequality); [3], [4] were in conjunction with the 
building of chemical stability models. The underlying methodology is similar for 
these algorithms: partition the polyhedron into simplices, then sum the volumes of 
the constituent simplices. While the approaches are direct, the work (i.e., number of 
calculations) increases exponentially with n [1]. 

This paper gives an efficient method for calculating the volume of a pyramid of 
species n - 2 (see p. 123 of [2]), whose base is a 2-dimensional bounded convex 
polygon. Hereafter, this pyramid, which is explicitly defined at the beginning of 
Section 2, will be referred to simply as a pyramid of species n - 2. Efficiency 
decision rules are given. Then it is shown how this method can be used to improve 
the efficiency of the algorithms in [1], [3], [4]. 

Wherever it is convenient, matrix notation will be used. Boldface capital letters 
(e.g., A, B, C) will denote matrices, while boldface lower case letters (e.g., a, b, c) will 
denote vectors. Prime will indicate transposition, with row vectors always primed, 
while column vectors are without a prime. Det(*) will represent the determinant of a 
matrix. ABS(*) will denote the absolute value of a scalar. SGN[*] will represent the 
sign of a scalar. By R , we will denote the n-dimensional Euclidean space. f linearly 
independent linear equations in (x1,. . ., xn) define an (n - f )-flat, where an r-flat is 
a flat (Euclidean) space of r dimensions in the sense that r coordinates are needed to 
fix a point of the flat. 
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2. Algorithm. Let P2' represent a 2-dimensional bounded convex polygon in Rl, 
whose successive adjacent distinct vertices are the vectors d1, d2,. . . , dp where p > 3. 
Now consider a pyramid whose base is P2n and with vertices represented by the 
vectors wO, . . ., wn-3 where n > 3, and where Wn-3 does not lie in the 2-flat defined 
by P2n, wn-4 does not lie in the 3-flat defined by P2nwn-3, and so on. The pyramid 
P2nWn - 3 ... wo is a pyramid of species n - 2 (see p. 123 of [2]) and the constituent 
simplices (wo ... wn-3dldid i1, i = 2,. . ., p - 1) are nonempty and it follows that 

(1) Dett wo> ln-31 dl, di, di+,) 0 , where 2 < p - 1. 
(1)~ ~ 1 .. 1 1, 1,1 1 

Direct evaluation of the pyramid P2nwn-3 ... wo entails the evaluation of the 
p - 2 determinants on the LHS of (1). The volume of the pyramid P2nwn-3 ... WO 
does not change if (for wO,... ,wn-3 fixed) P2n is replaced by any other polygon 
with the same 2-dimensional volume (i.e., area) and contained in the same 2-flat. In 
particular, if the replacing polygon is a triangle, then the volume of the resultant 
simplex (and hence the original pyramid P2nwn-3 ... wo) can be determined by the 
evaluation of a single determinant. This reduction in computational effort achieved 
by replacing P2n with an equivolume triangle is the crux of the algorithm. The 
algorithm transforms P2n into an equivolume (p - 1)-gon which is in turn trans- 
formed into an equivolume (p - 2)-gon and so on until an equivolume 3-gon (i.e., a 
triangle) is obtained. This is accomplished through the elimination of one vertex and 
changing the coordinates of another, with each transformation. 

The algorithm for determining the volume, c, of the pyramid P2nwn-3 ... wO is 
presented in Figure 1 in a pseudocode language which uses matrix notation. After 
the code has been executed, the last 3 columns of the matrix S are the coordinates of 
the vertices of the triangle replacing P2n. 

FIGURE 1 

procedure content; 
comment the parameters are called by value; 
Local variables introduced in the algorithm: 
VO. ... n_31 t'l .... ., b: vectors of length n, 
S: n X n matrix, 
si: ith column of the matrix S, 
A: n X 2 matrix. 
comment Step O-shift wo to origin; 
begin integer i, j; 

for i +- 0 to n - 3 do 
begin 

Vi +-W O; 

end; 
for j +- 1 to p do 

begin 
td dj-wO; 

end; 
end; 
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comment Step 1-initialize S; 
begin 

if n > 3 then S (v1, ... *,vn3, t1, t2, t3) 
else S (tj-t2,t3); 

end; 
comment Step 2-bring in t4; 
begin 

if p > 3 then 
begin integer i; 

sn-1 +-t2 t4; 
comment Step 3-bring in t5, t6, ... I tp; 
if p > 4 then 

begin 
for i +- 4 to p - 1 do 

begin 
A ~-((t1 - ilt-til 

b sn-1; 

Solve A(hj, h2)' = b for (hl, h2)'; 
if h2 # 0 then s n s, + (1/h2)ti+l 

else sn sn + (1/h1)ti; 
end; 

end; 
end; 

comment Step 4; 
c +-ABS(Det(S))/n!; 

end; 

3. Outline of Proof of Algorithm. This section gives an outline of the proof of the 
validity of the algorithm, for n > 3. The outline is provided, for sake of brevity, 
instead of a fully detailed proof. 

The algorithm is valid if it can be shown that 

1 1 
P~-1WO n3,dj, did+ (2 ABS(Det(S))= - E ABS Det l- +) 

for p > 3. 
Note that the RHS of Eq. (2) is the collection of the volumes of the constituent 

simplices of the pyramid and Det(S) on the LHS is the value used in Step 4 of the 
algorithm. 

Using an algebraic/geometric argument it can be shown that 

SGN[Det(vl,. . - 3, tlI t2, t ) 

(3) = SGN[Det(vl,. . ., vIn3, t1,t1, ti+1)] 
where 3 < i < p - 1, p > 4 and n > 3. 

It follows from the application of Eq. (3) to Eq. (2) and some algebra that it is 
sufficient to demonstrate that 

p-l 

(4) Det(S) = , Det(vj,.. .,vn3,t1,titi+J) forp > 3. 
i=2 
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It is a well-known fact that if X and Y are both square matrices of the same order 
and if X and Y differ only in their kth columns (or rows), then Det(X) + Det(Y) = 
Det(Z), where Z is a matrix whose columns (or rows) are the same as those of X (or 
Y) except that the kth column (or row) is the sum of the kth columns (or rows) of X 
and Y. 

It can be shown, using the above well-known fact, that the algorithm holds (i.e., 
Eq. (4) is satisfied) for p = 3,4, & 5 and then, by induction, for p > 5. 

The above is an outline of the proof of the algorithm for p > 3 and n > 3. In an 
identical manner, it can be shown that the algorithm holds for p > 3 and n = 3. 

4. Efficiency of Algorithm. The steps of the algorithm, outlined in Section 2, 
permit us to compare its efficiency relative to other methods of volume determina- 
tion. We define an "operation" as the sum of any two basic arithmetic operations 
(+,-, x, . ). It is assumed that all determinants are computed using Gaussian 
elimination with partial pivoting and require 

n3 _ 2 2n 1 
3 2 +3 2} 

operations for matrices of order n. Each of the methods considered utilizes the 
translation of Rln given in Step 0 and, as such, it will not be counted in the 
determination of number of operations. For the same reason, determination of n! 
and the division by n! will not be considered. 

The volume of the pyramid of species n - 2 can be directly evaluated by 
triangulation and the evaluation of the sum of the absolute values of the determi- 
nants on the RHS of Eq. (4), which excludes division by n!. This requires 

(5) (( - 2)( _ + - operations. 

The algorithm (Steps 1-4) requires 

(6) ( _ + 2 - ) +(p- 3)- operations, forp=3or4. 

To perform Step 3 requires (3n + 2) operations. It follows that the algorithm (Steps 
1-4) requires 

(7)( 2+32) + 2+ (p- 4)(3n +2)) operations, for p >4. 

Next we will consider the "repeated application of Steps 1, 2 & 4 approach". This 
approach entails using Steps 1,2 & 4 to obtain the volumes of disjoint pairs of 
adjacent simplices and then summing the volumes. This method requires 

(8) + _-+-+_oeain 
(8 [2 ](3 2 3 2) 2 ]2) 2[ 2 ] 

where, in this instance, [-I denotes "greatest integer in" (e.g., [2] = 2, [-7/3] = -3). 
Table I compares the efficiency of the three aforementioned methods of volume 
determination for pyramids of species n - 2. It shows that direct evaluation is as 
efficient as the other two methods only when the pyramid of species n - 2 is a 
simplex. Examination of Table I as well as Eqs. (5)-(8) reveals that as both n and p 
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grow, the algorithm (Steps 1-4) becomes increasingly more efficient than the other 
two methods. 

TABLE I 

Most efficient method for determining volume of a pyramid of 
species n - 2 for given n andp 

p n =3 n =4 n > 5 

3 

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4 ** ** ** 

5 III II II 

>6 III III II 

Equations giving 
Notation Method of volume determination numbeoofopraton 

- ~~~number of operations 
I Direct Evaluation (5) 
II Algorithm (Steps 1-4) (6) & (7) 
III Repeated Application of (8) 

Steps 1,2 & 4 
* I, II and III are equivalent 

** II and III are both most 
efficient 

5. Application of Algorithm for Determination of Volume of Convex Polyhedra. As 
noted earlier, the Cohen-Hickey method [1] for determining the volume of a convex 
polyhedron is by triangulation and summing the volumes of the constituent sim- 
plices. While this is correct, closer examination reveals that the convex polyhedron is 
partitioned into disjoint pyramids of species n - 2 each with a 2-dimensional 
bounded convex polygon for a base (.4 in the notation of [1]); then the bases are 
triangulated which leads to a triangulation of each pyramid of species n - 2 which, 
in turn, leads to a triangulation of the entire convex polyhedron. 

To improve the efficiency of the Cohen-Hickey method, the following modifica- 
tion is suggested: 

(i) Determine the volume, by the method indicated in Table I, of each constituent 
pyramid of species n - 2. The successive adjacent vertex information can be 
obtained from the edges ('ej) of a given e4. 

(ii) Sum the volumes of the pyramids of species n - 2 to obtain the volume of the 
convex polyhedron. 

Note that the Cohen-Hickey method, without the above modification, is equiva- 
lent to the direct evaluation method for a pyramid of species n - 2, from a 
methodology and efficiency point of view. 

Von Hohenbalken's method [3], [4] can be modified in an identical manner to that 
suggested for the Cohen-Hickey method to obtain the n-dimensional volume of a 
convex polyhedron. The algorithm (of Section 2) can easily be adapted to obtain the 
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f-dimensional volume (where 2 < f < n) of a pyramid of species f - 2, in R n, and 
then applied to f-dimensional convex polyhedra to compute their f-dimensional 
volume. 

It is perceived that considerable computational effort can be saved by selecting wo 
such that it lies in more (n - l)-dimensional faces-of the convex polyhedron than 
any of the other vertices. wo is the same for each of the constituent pyramids of 
species n - 2. 

6. Summary and Open Questions. An algorithm for determining the volume of a 
pyramid of species n - 2 was given. It was demonstrated that the algorithm 
becomes increasingly more efficient than other methods, as both n and p increase. 
The algorithm was applied to the Cohen-Hickey method to improve the latter's 
efficiency. 

The algorithm "transforms" a given pyramid of species n - 2 into a simplex to 
facilitate the volume determination. Can a general n-dimensional convex polyhedron 
be efficiently "transformed" into a simplex. of equal volume? Can a general 
f-dimensional convex polyhedron (where f < n) be efficiently "transformed" into an 
f-dimensional simplex* of equal volume? 

Resolution of the above questions may lead to more efficient procedures for 
volume determination. The author is exploring these possibilities. 
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